Prompt photon production with POWHEG

Michael Klasen

Institute for Theoretical Physics, University of Münster

14 April 2016

Work done in collaboration with F. König

Recent related publications:

• MK, C. Klein-Bösing, F. König, J.P. Wessels How robust is a thermal photon interpretation of the ALICE low- p_T data?

JHEP 1310 (2013) 119 [arXiv:1307.7034]

Recent related publications:

- MK, C. Klein-Bösing, F. König, J.P. Wessels
 How robust is a thermal photon interpretation of the ALICE low-p_T
 data?
 JHEP 1310 (2013) 119 [arXiv:1307.7034]
- M. Brandt, MK, F. König Nuclear parton density modifications from low-mass lepton pair production at the LHC Nucl. Phys. A 927 (2014) 78 [arXiv:1401.6817]

Recent related publications:

- MK, C. Klein-Bösing, F. König, J.P. Wessels
 How robust is a thermal photon interpretation of the ALICE low-p_T
 data?
 JHEP 1310 (2013) 119 [arXiv:1307.7034]
- M. Brandt, MK, F. König
 Nuclear parton density modifications from low-mass lepton pair production at the LHC
 Nucl. Phys. A 927 (2014) 78 [arXiv:1401.6817]
- MK, F. König
 New information on photon fragmentation functions
 Eur. Phys. J. C 74 (2014) 3009 [arXiv:1403.2290]

Recent related publications:

- MK, C. Klein-Bösing, F. König, J.P. Wessels
 How robust is a thermal photon interpretation of the ALICE low-p_T
 data?
 JHEP 1310 (2013) 119 [arXiv:1307.7034]
- M. Brandt, MK, F. König Nuclear parton density modifications from low-mass lepton pair production at the LHC Nucl. Phys. A 927 (2014) 78 [arXiv:1401.6817]
- MK, F. König
 New information on photon fragmentation functions
 Eur. Phys. J. C 74 (2014) 3009 [arXiv:1403.2290]
- MK, C. Klein-Bösing, K. Kovarik, G. Kramer, M. Topp, J.P. Wessels NLO Monte Carlo predictions for heavy-quark production at the LHC: pp collisions in ALICE JHEP 1408 (2014) 109 [arXiv:1405.3083]

How robust is a thermal photon interpretation ...?

MK., C. Klein-Bösing, F. König, J.P. Wessels, JHEP 1310 (2013) 119

New information on photon fragmentation functions

MK., F. König, Eur. Phys. J. C 74 (2014) 3009

Recalculation of direct processes at NLO

MK, F. König, to be published.

Leading order:

- Tree-level processes: $q \bar{q} \rightarrow \gamma g$, $q g \rightarrow \gamma q$
- Also with color and spin correlations (needed for POWHEG)
- Traces with FormCalc 8.4, checked against literature and MG5

Recalculation of direct processes at NLO

MK, F. König, to be published.

Leading order:

- Tree-level processes: $q \bar{q} o \gamma g$, $q g o \gamma q$
- Also with color and spin correlations (needed for POWHEG)
- Traces with FormCalc 8.4, checked against literature and MG5

Virtual corrections:

- One-loop processes: $q\bar{q} o \gamma g$, $qg o \gamma q$
- Tensor reduction w/ Form, scalar functions w/ LoopTools 2.13
- Renormalization in MS, checked against MG5_aMC@NLO

Recalculation of direct processes at NLO

MK, F. König, to be published.

Leading order:

- Tree-level processes: $q \bar{q} o \gamma g$, $q g o \gamma q$
- Also with color and spin correlations (needed for POWHEG)
- Traces with FormCalc 8.4, checked against literature and MG5

Virtual corrections:

- One-loop processes: $q\bar{q} \rightarrow \gamma g$, $qg \rightarrow \gamma q$
- Tensor reduction w/ Form, scalar functions w/ LoopTools 2.13
- ullet Renormalization in $\overline{
 m MS}$, checked against MG5_aMC@NLO

Real corrections:

- Tree-level processes: $q\bar{q} \to \gamma gg(q\bar{q})$, $qg \to \gamma qg$, $gg \to \gamma q\bar{q}$
- Traces with FormCalc 8.4, checked against MG5
- Dipole subtraction, QCD checked against AutoDipole 1.2.3
- Integrated QED dipole reproduces fragmentation function

NLO calculation:

[P. Aurenche et al., Phys. Rev. D 73 (2006) 094007]

- JETPHOX
- Direct and fragmentation contributions

NLO calculation:

[P. Aurenche et al., Phys. Rev. D 73 (2006) 094007]

- JETPHOX
- Direct and fragmentation contributions

Renormalization and factorization scales:

- $\mu = \mu_p = \mu_{\gamma} = p_T^{\gamma}$
- Variations by relative factors of two, but not four

NLO calculation:

[P. Aurenche et al., Phys. Rev. D 73 (2006) 094007]

- JETPHOX
- Direct and fragmentation contributions

Renormalization and factorization scales:

- $\mu = \mu_p = \mu_{\gamma} = p_T^{\gamma}$
- Variations by relative factors of two, but not four

Parton densities in the proton:

[H. Lai et al., Phys. Rev. D 82 (2010) 074024]

CT10nlo

NLO calculation:

[P. Aurenche et al., Phys. Rev. D 73 (2006) 094007]

- JETPHOX
- Direct and fragmentation contributions

Renormalization and factorization scales:

- $\mu = \mu_p = \mu_{\gamma} = p_T^{\gamma}$
- Variations by relative factors of two, but not four

Parton densities in the proton: [H. Lai et al., Phys. Rev. D 82 (2010) 074024]

CT10nlo

Photon fragmentation function: [L. Bourhis et al., Eur. Phys. J. C 2 (1998) 529]

BFG set II

P. Nason et al., JHEP 0411 (2004) 040; 0711 (2007) 070; 1101 (2011) 095

NLO calculations:

- Increase normalization, reduce scale dependence (μ, μ_p, μ_γ)
- Include only one additional parton, no hadronization

P. Nason et al., JHEP 0411 (2004) 040; 0711 (2007) 070; 1101 (2011) 095

NLO calculations:

- Increase normalization, reduce scale dependence (μ, μ_p, μ_γ)
- Include only one additional parton, no hadronization

Parton shower Monte Carlos:

- Leading-order normalization, large scale dependence
- Many additional partons, different hadronization models

P. Nason et al., JHEP 0411 (2004) 040; 0711 (2007) 070; 1101 (2011) 095

NLO calculations:

- Increase normalization, reduce scale dependence (μ, μ_p, μ_γ)
- Include only one additional parton, no hadronization

Parton shower Monte Carlos:

- Leading-order normalization, large scale dependence
- Many additional partons, different hadronization models

NLO+PS with POWHEG:

- Subtract overlap with FKS [Frixione, Kunszt, Signer., Nucl. Phys. B 467 (1996) 399]
- Generate hardest radiation first, only positive weights
- Match to any PS (PYTHIA, HERWIG, ...) with p_T veto

P. Nason et al., JHEP 0411 (2004) 040; 0711 (2007) 070; 1101 (2011) 095

NLO calculations:

- Increase normalization, reduce scale dependence (μ, μ_p, μ_γ)
- Include only one additional parton, no hadronization

Parton shower Monte Carlos:

- Leading-order normalization, large scale dependence
- Many additional partons, different hadronization models

NLO+PS with POWHEG:

- Subtract overlap with FKS [Frixione, Kunszt, Signer., Nucl. Phys. B 467 (1996) 399]
- Generate hardest radiation first, only positive weights
- Match to any PS (PYTHIA, HERWIG, ...) with p_T veto

Required ingredients:

- Color- and spin-correlated squared Born amplitudes
- Finite (UV-renormalized and IR-subtracted) loop amplitudes
- Real emission squared amplitudes

MK, F. König, to be published.

"Fragmentation" contribution: [S. Höche et al., Phys. Rev. D 81 (2010) 034026]

- QED parton shower $(q \to q\gamma)$, matched to NLO direct cont.
- Suppressed wrt. to QCD by α/α_s , color factors, multiplicities
- Globally only 2% photons in total QCD+QED event samples
- Reweight QED radiation by C=50 (100), check independence

MK, F. König, to be published.

"Fragmentation" contribution:

[S. Höche et al., Phys. Rev. D 81 (2010) 034026]

- QED parton shower $(q o q \gamma)$, matched to NLO direct cont.
- Suppressed wrt. to QCD by $\alpha/\alpha_{\rm s}$, color factors, multiplicities
- Globally only 2% photons in total QCD+QED event samples
- Reweight QED radiation by C=50 (100), check independence

Renormalization and factorization scales:

• $\mu = \mu_p = p_T^{\gamma,q,g}$ (from underlying Born process)

MK, F. König, to be published.

"Fragmentation" contribution:

[S. Höche et al., Phys. Rev. D 81 (2010) 034026]

- ullet QED parton shower $(q o q\gamma)$, matched to NLO direct cont.
- Suppressed wrt. to QCD by α/α_s , color factors, multiplicities
- Globally only 2% photons in total QCD+QED event samples
- Reweight QED radiation by C=50(100), check independence

Renormalization and factorization scales:

• $\mu = \mu_p = p_T^{\gamma,q,g}$ (from underlying Born process)

Parton densities in the proton:

[H. Lai et al., Phys. Rev. D 82 (2010) 074024]

CT10nlo

MK, F. König, to be published.

"Fragmentation" contribution:

[S. Höche et al., Phys. Rev. D 81 (2010) 034026]

- QED parton shower $(q o q \gamma)$, matched to NLO direct cont.
- Suppressed wrt. to QCD by α/α_s , color factors, multiplicities
- Globally only 2% photons in total QCD+QED event samples
- Reweight QED radiation by C=50 (100), check independence

Renormalization and factorization scales:

• $\mu = \mu_p = p_T^{\gamma, q, g}$ (from underlying Born process)

Parton densities in the proton:

[H. Lai et al., Phys. Rev. D 82 (2010) 074024]

CT10nlo

Symmetrization of parton splitting in the final state:

- doublefsr=1
- Reduces POWHEG cross section by 10%

Photon fragmentation function in 2- and 3-jet events

S. Höche et al., Phys. Rev. D 81 (2010) 034026 (Fig. 1)

Excellent description of ALEPH data [ALEPH Coll., Z. Phys. C 69 (1996) 365] Works also for other jet resolution parameters $y_{\rm cut} \geq \min\left(\frac{E_i}{E_i}, \frac{E_j}{E_i}\right) \cdot \frac{s_{ij}}{s}$

Born suppression factor

P. Nason, C. Oleari, arXiv:1303.3922

Born-level event generation cut:

- $pp \rightarrow \gamma + X$ has coll. divergence at LO \rightarrow impose $p_T > p_T^{min}$
- Influences events at low $p_T \to \text{region of interest for thermal } \gamma$
- Not applicable for studies of QGP

Born suppression factor

P. Nason, C. Oleari, arXiv:1303.3922

Born-level event generation cut:

- $pp \rightarrow \gamma + X$ has coll. divergence at LO \rightarrow impose $p_T > p_T^{\sf min}$
- Influences events at low $p_T o$ region of interest for thermal γ
- Not applicable for studies of QGP

Analytic Born suppression factor:

- Multiplies Born cross section
 - POWHEG ($p_{T,\text{peak}} = 10 \text{ GeV}$, power i = 3):

$$f_{\text{sup.}} = \left(\frac{p_T^2}{p_T^2 + p_{T,\text{peak}}^2}\right)^{i}$$

- Approximation of $\Theta(p_T - p_T^{\min})$ (e.g. with $p_T^{\min} = 1$ GeV):

$$f_{\text{sup.}} = \frac{1}{\pi} \left[\arctan[(p_T - p_T^{\text{min}}) \cdot 10^4] + \frac{\pi}{2} \right]$$

ullet Events then reweighted by $1/f_{
m sup.}$, checked independence

PHENIX Collaboration at RHIC

Center-of-mass energy:
$$\sqrt{s}_{pp}=$$
 200 GeV

PHENIX Collaboration at RHIC

Center-of-mass energy: $\sqrt{s}_{pp} = 200 \text{ GeV}$

Inclusive photons:

[Phys. Rev. C 87 (2013) 054907 and D 86 (2012) 072008]

- \mathcal{L} (Run 2006) = 4.0 and 8.0 pb⁻¹
- $p_T^{\gamma} \in [1; 5]$ and [5; 25] GeV
- $|\eta^{\gamma}| < 0.35$

PHENIX Collaboration at RHIC

Center-of-mass energy: $\sqrt{s}_{pp} = 200 \text{ GeV}$

Inclusive photons:

[Phys. Rev. C 87 (2013) 054907 and D 86 (2012) 072008]

- \mathcal{L} (Run 2006) = 4.0 and 8.0 pb⁻¹
- $p_T^{\gamma} \in [1; 5]$ and [5; 25] GeV
- $|\eta^{\gamma}| < 0.35$

Isolated photons:

[Phys. Rev. D 86 (2012) 072008]

- $E^{\text{had.}}/E^{\gamma} \leq 0.1$
- $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \le 0.5$

PHENIX Collaboration at RHIC

Center-of-mass energy: $\sqrt{s}_{pp} = 200 \text{ GeV}$

Inclusive photons:

[Phys. Rev. C 87 (2013) 054907 and D 86 (2012) 072008]

- \mathcal{L} (Run 2006) = 4.0 and 8.0 pb⁻¹
- $p_T^{\gamma} \in [1; 5]$ and [5; 25] GeV
- $|\eta^{\gamma}| < 0.35$

Isolated photons:

[Phys. Rev. D 86 (2012) 072008]

- $E^{\text{had.}}/E^{\gamma} \le 0.1$
- $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \le 0.5$

Photons + jets:

[Phys. Rev. C 80 (2009) 024908]

- \mathcal{L} (Runs 2005 + 2006) = 3.0 + 10.7 pb⁻¹
- Anti- k_T cluster algorithm with R = 0.4

Comparison of NLO and POWHEG with PHENIX data

MK, F. König, to be published.

JETPHOX ($\mu = \mu_p = \mu_\gamma = p_T$) too large at low $p_T \to$ fragmentation cont. JETPHOX ($\mu = \mu_p = 0.5 p_T, \mu_\gamma = 2 p_T$) better [MK, F. König, EPJC 74 (2014) 3009]

Fraction of isolated photons at NLO

PHENIX Coll., Phys. Rev. D 86 (2012) 072008 (Fig. 13)

NLO too high at small and intermediate p_T for all scale choices

Fraction of isolated photons with POWHEG

MK, F. König, to be published.

POWHEG gives first correct description Scale uncertainty cancels completely (no fragmentation cont.)

Transverse momentum balance of photons and jets

MK, F. König, to be published. $p p \rightarrow \gamma + X \text{ at } \sqrt{s} = 200 \text{ GeV}$ 10⁶ POWHEG+PYTHIA 10⁵ PYTHIA LO 10⁴ CT10nlo $\frac{d\sigma}{\Delta y\;p_T^{\gamma j}\;dp_T^{\gamma j}}(pb\;GeV^2)$ $|\eta^{\gamma}| < 0.35$ 10³ 10² 10 10⁻¹ 10⁻² $p_{\tau}^{\gamma j}$ (GeV)

Individual cuts on $p_T^{\gamma}>1$ GeV and $p_T^{\prime}>1$ GeV At $p_T^{\gamma j}\to 0$ NLO diverges, PYTHIA/POWHEG have finite turnover PYTHIA underestimates absolute cross section in particular at low p_T

Azimuthal correlation of photons and jets

MK, F. König, to be published.

At $\Delta\phi \to \{0,\pi\}$ NLO diverges, PYTHIA/POWHEG have finite turnover PYTHIA has no "fragmentation" and wrong normalization (not shown)

Contributions of isolated and "fragmentation" photons

MK, F. König, to be published.

"Fragmentation" processes mostly collinear $(\Delta \phi \simeq 0$, but also $\pi)$

Conclusion

Motivation:

- Prompt photons are an important probe of the QGP
- Photon-jet correlations important for jet quenching

Conclusion

Motivation:

- Prompt photons are an important probe of the QGP
- Photon-jet correlations important for jet quenching

Calculation:

- Recalculation of direct photon production at NLO
- POWHEG implementation: QED PS, Born suppression
- Experimental conditions: PHENIX at RHIC

Conclusion

Motivation:

- Prompt photons are an important probe of the QGP
- Photon-jet correlations important for jet quenching

Calculation:

- Recalculation of direct photon production at NLO
- POWHEG implementation: QED PS, Born suppression
- Experimental conditions: PHENIX at RHIC

Results:

- Improved agreement with p_T spectrum of inclusive photons
- First correct description of isolated photon fraction
- Reliable prediction for photon-jet p_T-balance
- First correct description of photon-jet azimuthal correlation
- Decomposition into isolated and "fragmentation" photons

Outlook

What remains to be done:

- Application to pA and AA collisions
- Study cold nuclear effects with nPDFs
- Implement medium effects (energy loss, hydrodynamics, ...)